Cluster Sampling Filters for Non-Gaussian Data Assimilation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Sampling Filters for Non-Gaussian Data Assimilation

This paper presents a fully non-Gaussian version of the Hamiltonian Monte Carlo (HMC) sampling filter. The Gaussian prior assumption in the original HMC filter is relaxed. Specifically, a clustering step is introduced after the forecast phase of the filter, and the prior density function is estimated by fitting a Gaussian Mixture Model (GMM) to the prior ensemble. Using the data likelihood func...

متن کامل

A Sampling Filter for Non-Gaussian Data Assimilation

Data Assimilation in operational models like atmospheric or Ocean models is almost impossible without posing many assumptions due to the complication of the model that is usually very high-dimensional and also due to non-linearity of the observation operator used to map the state space to the measurement space. Ensemble Kalman filter (EnKF) is the most popular ensemble-based data assimilation a...

متن کامل

Sampling The Posterior: An Approach to Non-Gaussian Data Assimilation

The viewpoint taken in this paper is that data assimilation is fundamentally a statistical problem and that this problem should be cast in a Bayesian framework. In the absence of model error, the correct solution to the data assimilation problem is to find the posterior distribution implied by this Bayesian setting. Methods for dealing with data assimilation should then be judged by their abili...

متن کامل

An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation

This paper aims to investigate several new nonlinear/non-Gaussian filters in the context of the sequential data assimilation. The unscentedKalman filter (UKF), the ensemble Kalman filter (EnKF), the sampling importance resampling particle filter (SIR-PF) and the unscented particle filter (UPF) are described in the state-space model framework in the Bayesian filtering background. We first evalua...

متن کامل

A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation

Data assimilation combines information from models, measurements, and priors to obtain improved estimates of the state of a dynamical system such as the atmosphere. Ensemble-based data assimilation approaches such as the Ensemble Kalman filter (EnKF) have gained wide popularity due to their simple formulation, ease of implementation, and good practical results. Many of these methods are derived...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmosphere

سال: 2018

ISSN: 2073-4433

DOI: 10.3390/atmos9060213